Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts.
نویسندگان
چکیده
OBJECTIVES The function of Kv4.3 (KCND3) channels, which underlie the transient outward current I(to) in human heart, can be modulated by several accessory subunits such as KChIP2 and KCNE1-KCNE5. Here we aimed to determine the regional expression of Kv4.3, KChIP2, and KCNE mRNAs in non-failing and failing human hearts and to investigate the functional consequences of subunit coexpression in heterologous expression systems. METHODS We quantified mRNA levels for two Kv4.3 isoforms, Kv4.3-S and Kv4.3-L, and for KChIP2 as well as KCNE1-KCNE5 with real-time RT-PCR. We also studied the effects of KCNEs on Kv4.3+KChIP2 current characteristics in CHO cells with the whole-cell voltage-clamp method. RESULTS In non-failing hearts, low expression was found for KCNE1, KCNE3, and KCNE5, three times higher expression for KCNE2, and 60 times higher for KCNE4. Transmural gradients were detected only for KChIP2 in left and right ventricles. Compared to non-failing tissue, failing hearts showed higher expression of Kv4.3-L and KCNE1 and lower of Kv4.3-S, KChIP2, KCNE4, and KCNE5. In CHO cells, Kv4.3+KChIP2 currents were differentially modified by co-expressed KCNEs: time constants of inactivation were shorter with KCNE1 and KCNE3-5 while time-to-peak was decreased, and V(0.5) of steady-state inactivation was shifted to more negative potentials by all KCNE subunits. Importantly, KCNE2 induced a unique and prominent 'overshoot' of peak current during recovery from inactivation similar to that described for human I(to) while other KCNE subunits induced little (KCNE4,5) or no overshoot. CONCLUSIONS All KCNEs are expressed in the human heart at the transcript level. Compared to I(to) in native human myocytes, none of the combination of KChIP2 and KCNE produced an ideal congruency in current characteristics, suggesting that additional factors contribute to the regulation of the native I(to) channel.
منابع مشابه
Functional modulation of the transient outward current Ito by KCNE β-subunits and regional distribution in human non-failing and failing hearts
a Medical Faculty, Dresden University of Technology, Fetscherstr. 74, Dresden, 01307 Germany b Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences, 6701 Hungary c Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, Szeged, 6701 Hungary d Virginia Commonwealth University, Department of Physiology-Box 980551, Richmond, Virginia 2...
متن کاملTransient outward current in human ventricular myocytes of subepicardial and subendocardial origin.
In various mammalian species, shapes of action potentials vary within the cardiac wall because of differences in transient outward current (Ito). A prominent Ito exists in human ventricular myocytes, but cells have not been separated according to their original localization. Human ventricular myocytes were isolated from separated subepicardial and subendocardial tissue, and regional variations ...
متن کاملPhysiological roles of the transient outward current Ito in normal and diseased hearts.
The Ca(2+)-independent transient outward K(+) current (I(to)) plays a critical role in underlying phase 1 of repolarization of the cardiac action potential and, as a result, is central to modulating excitation-contraction coupling and propensity for arrhythmia. Additionally, I(to) and its molecular constituents are consistently reduced in cardiac hypertrophy and heart failure. In this review, w...
متن کاملIncreased Expression of the Auxiliary β2-subunit of Ventricular L-type Ca2+ Channels Leads to Single-Channel Activity Characteristic of Heart Failure
BACKGROUND Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression...
متن کاملmRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study
Differences in mRNA expression levels have been observed in failing versus non-failing human hearts for several membrane channel proteins and accessory subunits. These differences may play a causal role in electrophysiological changes observed in human heart failure and atrial fibrillation, such as action potential (AP) prolongation, increased AP triangulation, decreased intracellular calcium t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 71 4 شماره
صفحات -
تاریخ انتشار 2006